

SmartActuator Series

ICR Basic & Plus

INTEGRATED CONTROL ROD-STYLE ACTUATOR

○ENDURANCE TECHNOLOGY

LINEAR SOLUTIONS MADE EASY

What is a **Smart**Actuator?

The SmartActuator is a controller, drive and motor integrated into one compact, durable, lightweight actuator. Designed for simple extend and retract operation, the ICR Basic can easily be installed and set up by anyone familiar with pneumatic or hydraulic cylinders. For flexibility, the Plus offers indexer programming and network communication capabilities for a wide variety of demanding applications.

Tolomatic has over 50 years of experience manufacturing rodless and rod-style electric and pneumatic actuators. The SmartActuator puts this experience and the intelligence of powerful digital drive technology into one actuator. The result: reliable, affordable power that is remarkably easy-to-use.

Basic & Plus Capabilities

- 100% duty cycle for continuous operation
- 24 Vdc opto-isolated inputs. NPN or PNP
- IP65 option For protection against water and dust ingress

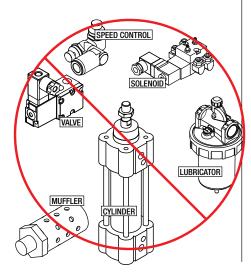
The SmartActuator ICR Basic features 2-position extend/retract capability, mid-stroke positioning with sensors, and force control.

ICR Basic Capabilities

- 2-position extend / retract
- 2 outputs, 24V line driver; fault, in-position
- 4 inputs, Enable, E-Stop, Fwd., Rev.
- Independent extend/retract speed control
- Mid-stroke positioning with sensors
- Force control/limiting

The ICR Plus has all the ICR Basic capabilities and adds: indexing, network communication, stand-alone operation. stepper and analog position modes.

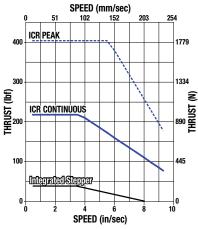
Plus Capabilities


- Indexer programming
- 2 outputs, opto-isolated sinking/sourcing
- 8 inputs
- Stand-alone operation
- Infinite positioning
- Network communication
- CANopen DeviceNet
- RS-232 to CANopen
- Stepper mode (Pulse / direction)
- Analog position mode

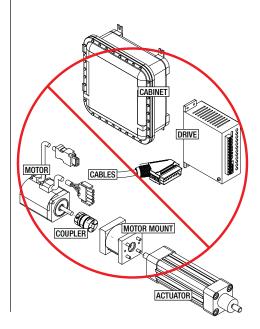
Choose the **Smart**Actuator for these advantages:

vs PNEUMATIC / HYDRAULIC CYLINDERS

- More cost effective to operate
 –Less power consumption
- No costly and messy leaks
- Fewer, cleaner components


 Eliminates valves, hoses,
 condensers, mufflers, filters,
 lubricators, compressors
- Precise control of position, speed, acceleration and force
- Quiet operation
- Accurately positions load at multiple and repeatable locations
- Ability to synchronize motion with other machine operations

VS INTEGRATED STEPPER ACTUATOR

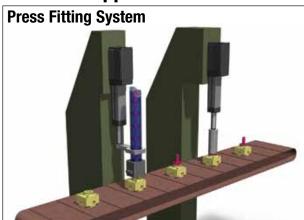

- True closed loop control ensures position is actually met
- Servo motors supply 100% duty cycle vs. stepper motors which typically supply less than 50% duty cycle
- Expanded speed/torque capability

SPEED vs THRUST ICR Motor & Integrated Stepper Motor

VS TRADITIONAL ELECTRIC SYSTEMS

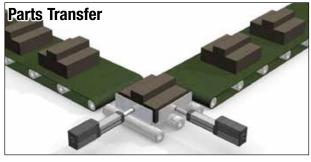
- Fewer components to purchase and assemble
- Eliminates separate actuator, motor, drive, cables, coupler and motor mount
- Eliminates need for additional cabinet space: smaller footprint
- Approximately 1/2 the cost of traditional electric actuator systems
- ICR Basic model does not require a computer or software

Sold & Serviced By

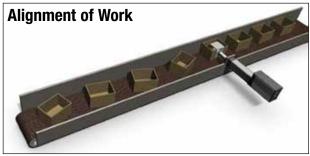

About the ICR Basic

The ICR Basic is an easy-to-use, all-in-one (control, drive, motor, actuator) electric rod-style actuator designed for industrial applications. The ICR Basic is a perfect pneumatic or hydraulic cylinder replacement for low to medium thrust applications. Easy-to-use setup requires no software, tuning or programming.

Capabilities

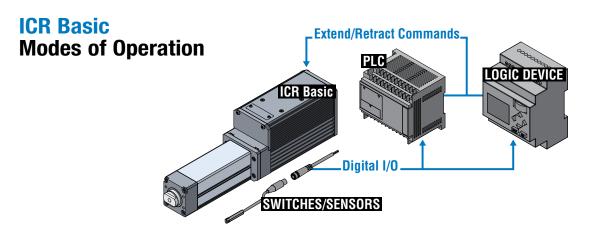

- 2-position extend / retract
- Independent extend/retract speed control
- Mid-stroke positioning with sensors
- Force control/limiting
- 100% duty cycle for continuous operation
- 4 inputs, Enable, E-Stop, Fwd., Rev.
- 2 outputs, 24V line driver; fault, in-position
- 24 Vdc opto-isolated inputs, NPN or PNP
- IP65 option For protection against water and dust ingress

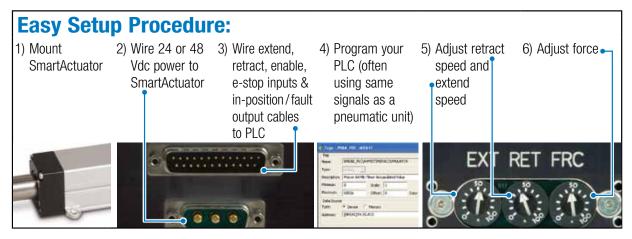
ICR Basic Applications


Force control is utilized to limit output force of actuator to press parts together. Similar applications include:

- Parts placement
- Labeling
- Stamping
- Inserting

2-position and mid-stroke positioning is used to transfer parts. Examples include:


- Diverting
- Gating
- Sorting
- Rejecting



Force control is utilized to align parts, similar applications include:

- Clamping
- Parts verification
- Labeling
- Guiding

Easy Operation

Enable input: Enables or disables the actuator.

Extend/retract input: Extends/retracts the actuator's rod as long as signal is sent or until end of stroke is reached.

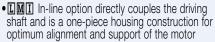
E-Stop input: Emergency stop, disables

Fault output: Sends signal to logic device for a fault condition.

In-position output: Sends signal to logic device indicating actuator is in position and motion is complete.

Speed and force of the ICR Basic are easily adjusted with simple interface controls.

- Speed Control Independent control of extend and retract speed from 2 to 100% of capable range.
- Force Control Adjustable from 10 to 100% of maximum force. Once force is reached, the actuator will stop and hold position.



SmartActuator ICR Basic **INTEGRATED CONTROL ROD-STYLE ACTUATOR**

Endurance Technology features are designed for maximum durability to provide extended service life. This endurance technology symbol indicates our durability design features.

MOTOR ORIENTATION •

YOU CAN CHOOSE

• RP Reverse-parallel option minimizes the overall length and offers 1:1 or 2:1 belt ratio

BALL SCREW TECHNOLOGY

- Oversized ball screw selection for extremely long service life
- Lubricated for life of actuator at the factory with the highest quality synthetic grease

⇔BEARING●

material allows smooth operation and support

Unique nose bearing

of the thrust rod

OTHRUST TUBEO

- •Hardened nickel plated steel rod ground and polished for greater durability than stainless steel
- Excellent corrosion resistance from many chemicals and resists incidental contact damage

OTHREADED ROD ENDO

- Nickel plated aluminum for corrosion resistance
- •Provides a common interface to multiple rod end options

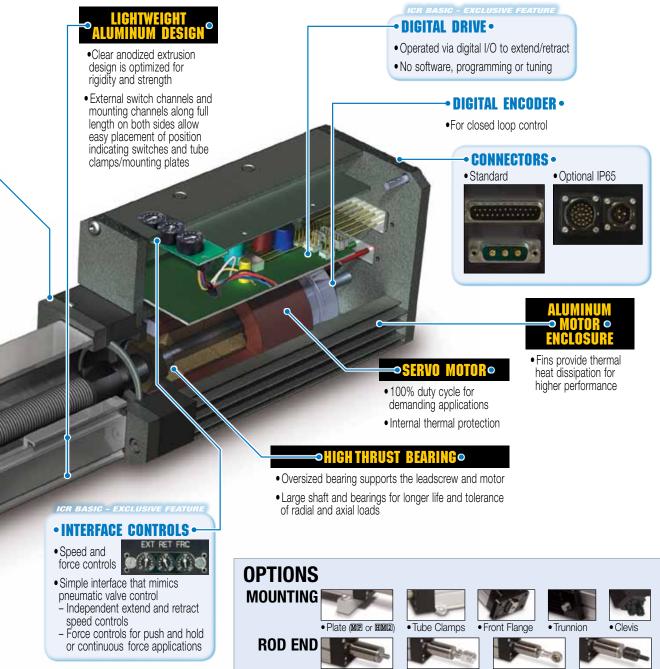
INTERNAL BUMPER

•Bumper protects the screw and nut assembly from damage at the end of stroke

oanti-rotate bearingö

- •Engineered resin guide bearings provide anti-rotation of the thrust rod
- Supports the thrust tube and nut assembly through entire stroke length

from entering the housing for extended


orod Wiper⊌

 Prevents contaminants life of the actuator

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Tolomatic ... MAXIMUM DURABILITY

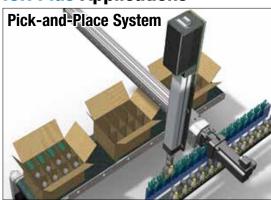
FLEXIBLE MOUNTING •

- •Front face and bottom mounting holes are standard
- Options: front flange, plates, tube clamps, trunnions, rear clevis (RP models only)

External Threads Eye Alignment Coupler For protection For vertical applications **IP65 BRAKE** and energy savings when against water and dust ingress ICR is not in use • Signal Cable (5m, IP40 or IP65) **CABLES** • Power Cable (5m, IP40 or IP65) Styles include: Reed, Solid State PNP or NPN, all available in **SWITCHES** normally open or normally closed. RoHs compliant, CE rated

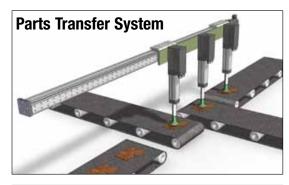
About the ICR Plus

The ICR Plus is an all-in-one (control, drive, motor, actuator) electric rod-style actuator designed for industrial applications, with a powerful, flexible integrated digital drive. The ICR Plus offers programmability, infinite positioning and advanced network communication options.


CAPABILITIES

- Indexer programming
- Stand-alone operation
- Infinite positioning
- Network communication
 - CANopen DeviceNet
 - RS-232 to CANopen

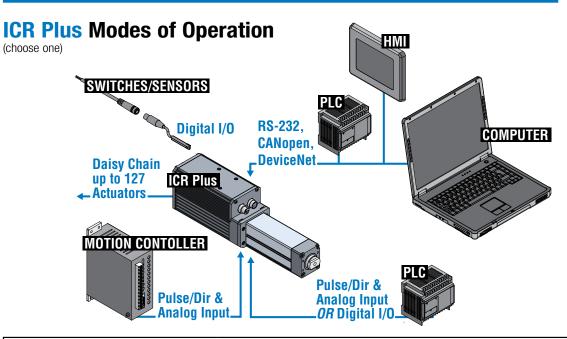
- Stepper mode (Pulse / direction)
- Analog position mode
- 100% duty cycle for continuous operation
- 8 inputs

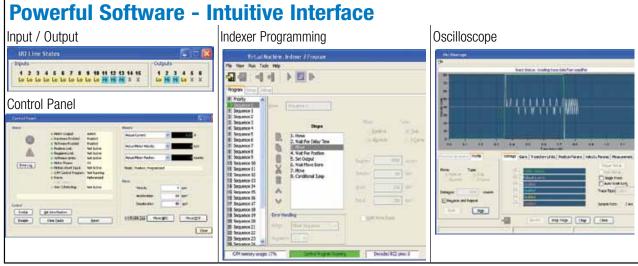

- 2 outputs, opto-isolated sinking/sourcing
- 24 Vdc opto-isolated I/O that is NPN or PNP
- IP65 option For protection against water and dust ingress

ICR Plus Applications

Complex applications utilize flexibility of indexer programming. Examples include:

- Pick and place
- Gantry
- Palletizer
- Cross axis cutter
- Sorter


Network communication is utilized to control multiple actuators.


- CANopen daisy chain up to 127 actuators
- DeviceNet daisy chain up to 63 actuators
- RS-232 to CANopen daisy chain up to 127 actuators

Programmable motion profile allows precise control of position velocity and acceleration. Similar applications include:

- Wire winding
- Slitting
- Positioning
- Test fixtures
- Applying
- Inspection
- Cutting

Flexible Operation

Stand-alone mode: PLCs or switches/sensors can send commands to the actuator via digital I/O to invoke indexer program for motion or other logic events.

Communication mode: PLC or PC sends position commands or register changes over RS-232, CANopen or DeviceNet. CANopen (127) and DeviceNet (63) can control multiple actuators simultaneously. The RS-232 port can be used as a gateway to the CANopen bus as well. A Microsoft® COM object library is provided to easily utilize the power of CANopen through Windows® development in VB, C++, .NET, LabView and other programming languages.

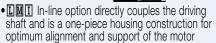
Stepper mode: PLC or motion controller sends pulse/direction commands to actuator initiating motion.

Analog position mode: PLC or motion controller sends 0 - 10 VDC analog signal to actuator which equates into an actual position (contact factory for Analog Torque Mode).

Smart Actuator ICR Plus INTEGRATED CONTROL ROD-STYLE ACTUATOR

○ENDURANCE TECHNOLOGY

Endurance Technology features are designed for maximum durability to provide extended service life. This endurance technology symbol indicates our durability design features. ICR PLUS - EXCLUSIVE OPTION


COMMUNICATION PORTS

- DeviceNet daisy chain up to 63 actuators
- Two ports for easy daisy chain wiring
- Optional CANopen daisy chain up to 127 actuators (CANopen device profile DSP-402)

MOTOR ORIENTATION

YOU CAN CHOOSE

• RP Reverse-parallel option minimizes the overall length and offers 1:1 or 2:1 belt ratio

• BALL SCREW TECHNOLOGY •

- Oversized ball screw selection for extremely long service life
- Lubricated for life of actuator at the factory with the highest quality synthetic grease

OTHRUST TUBEO

- •Hardened nickel plated steel rod ground and polished for greater durability than stainless steel
- Excellent corrosion resistance from many chemicals and resists incidental contact damage

≎THREADED ROD END∘

- Nickel plated aluminum for corrosion resistance
- Provides a common interface to multiple rod end options

OINTERNAL BUMPERO

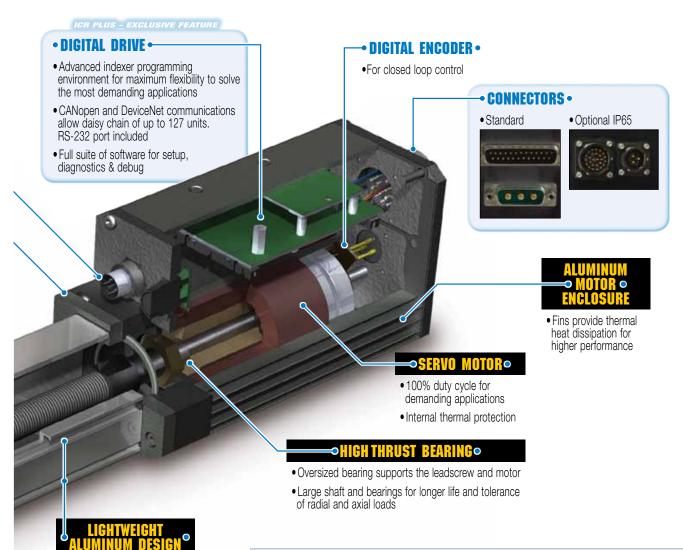
 Bumper protects the screw and nut assembly from damage at the end of stroke

• Prevents contaminants from entering the housing for extended life of the actuator

orod Wiper⊌

⇒BEARING∘

of the thrust rod


 Unique nose bearing material allow smooth operation and support

oanti-rotate bearing⊌

- •Engineered resin guide bearings provide anti-rotation of the thrust rod
- Support the thrust tube and nut assembly through entire stroke length

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

•Clear anodized extrusion design is optimized for rigidity and strength

 External switch channels and mounting channels along full length on both sides allow easy placement of position indicating switches and tube clamps/mounting plates

FLEXIBLE MOUNTING •

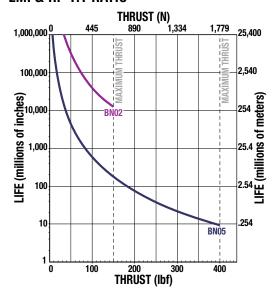

- Front face and bottom mounting holes are standard
- Options: front flange, plates, tube clamps, trunnions, rear clevis (RP models only)

Need a RODLESS SmartActuator? Choose the ICM Plus

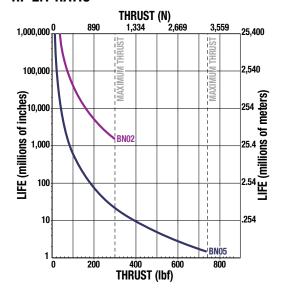
The ICM Plus places an all-in-one (control, drive, motor) solution mounted to your choice of Tolomatic electric rodless or rod-style actuator. The ICM Plus is designed for industrial applications, by combining a flexible integrated digital drive with the power of a servo motor.

NOTE: The ICM Basic is NOT available on other Tolomatic actuators.

MECHANICAL SPECIFICATIONS


			Unit	BN02	BN05			
	Sc	rew Type		Ball	Ball			
	Sc	rew Pitch	tpi	2	5			
Sc	row.	Diameter	in	0.75	0.63			
- 30	ICW	Diameter	mm	19.1	15.9			
	Sc	rew Lead	in/rev	0.500	0.200			
		TOW LOAG	mm/rev	12.70	5.08			
	Screw		lbf	21,000	6,250			
	Static Load		N	93,413	27,801			
_		Screw	lbf	3,400	825			
L	Dynamic Load		Ν	15,124	3,670			
	В	ack Drive	lbf	7.5	12.5			
		Force*	Ν	33.4	55.6			
		Accuracy	in/ft	0.003	0.003			
		,	mm/m	0.02	0.02			
	Backlash		in	0.015	0.015			
	,		mm	0.38	0.38			
		LMI 1:1	lbf	150	400			
	u		N	667	1779			
	Peak	RP 1:1	lbf	142.5	360			
ust	Δ.		N	633.9	1601			
Maximum Thrust		RP 2:1	lbf	285	720			
트			N	1267.7	3202.7			
Ē		LMI 1:1	lbf	80	215			
Ma	Continuous		N	356	956			
	ţ	RP 1:1	N Ibf	76	193.5			
	9		lbf	338 152	<u>860.7</u> 387			
		RP 2:1	N	676	1721.5			
			in	24	24			
	Ma	ax Stroke		609.6	609.6			
	D	- Walada	lb	9.31	7.77			
	Ва	e Weight LMI	kg	4.22	3.52			
	Por		lb	11.79	10.25			
	Das	se Weight RP, 1:1	kg	5.35	4.65			
	Res	se Weight	lb	11.99	10.45			
	Das	RP, 2:1	kg	5.44	4.74			
	W	eight/unit	lb/in	0.345	0.313			
	***	of stroke	kg/mm	0.0062	0.0056			
			deg F	50	50			
	Min temp		deg C	10	10			
		deg F	122	122				
	N	/lax temp	deg C	50	50			
	NOTI		ınce de-ratir	ng will be necesseater than 25 de	ary at ambient			
		IP rating	std	40	40			
		IP rating	option	65	65			
Ma	γΔn	ir rauling iti-Rotate						
ivia		Tolerance	degrees	grees ± 0.25 to ± 1.25				

Lenip	icialuico git	sater than 25 de	g. 0 (11 deg 1)
IP rating	std	40	40
IP rating	option	65	65
Max Anti-Rotate Tolerance	degrees	±0.25 to	± 1.25


ROHS Compliant Components **C** Approval Pending

BALL SCREW LIFE

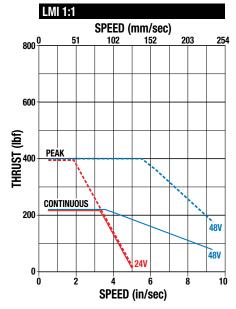
LMI & RP 1:1 RATIO

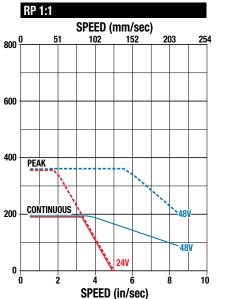
RP 2:1 RATIO

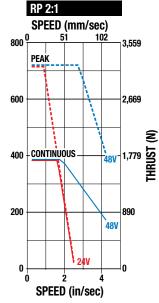
*NOTE: The L*₁₀ *expected life of a ball screw linear actuator is expressed* as the linear travel distance that 90% of properly maintained ball screws manufactured are expected to meet or exceed. This is not a guarantee and this graph should be used for estimation purposes only.

The underlying formula that defines this value is:

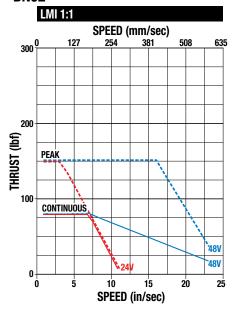
Travel life in millions of inches, where:

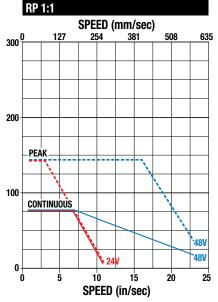

C = Dynamic load rating (lbf) **F** = Cubic mean applied load (lbf)

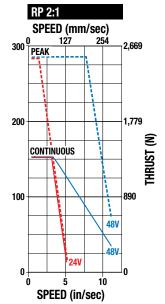

All curves represent properly lubricated and maintained actuators.


^{*}In vertical applications an unpowered ICR will require a brake to maintain position if the load on the actuator exceeds this value.

SPEED vs THRUST







BN02

SIDE LOAD CONSIDERATIONS

Rod screw actuators are designed to push guided and supported loads and are not designed for applications that require significant side loading. Contact Tolomatic for details regarding side loading capabilities.

CALCULATING RMS THRUST AND VELOCITY

Servo motor actuator systems have two speed/thrust curves: one for continuous duty operation and another for intermittent duty. A servo system can be selected according to the total thrust and maximum velocity indicated by the continuous duty curve. However, by calculating the root mean square (RMS) thrust based on the application duty cycle, you may be able to take advantage of the higher peak thrust available in the intermittent duty range. The RMS thrust must fall within the continuous duty region of the motor/drive and the application maximum thrust must fall under the peak thrust of the actuator. Use the following formulae when calculating the RMS thrust and velocity. When selecting an integrated servo actuator system, it is necessary to add a margin of safety to the thrust and velocity required to move the load. The recommended margin for servo motors is 15%.

$$\mathbf{T}_{\text{RMS}} = \sqrt{\frac{\text{sum } (\mathbf{T}_{i}^{2} \times \mathbf{t}_{i})}{\text{sum } (\mathbf{t}_{i})}}$$

$$\mathbf{V}_{\text{RMS}} = \sqrt{\frac{\text{sum } (\mathbf{V}_i^2 \times \mathbf{t}_i)}{\text{sum } (\mathbf{t}_i)}}$$

Where:

 $T_{RMS} = RMS Thrust$

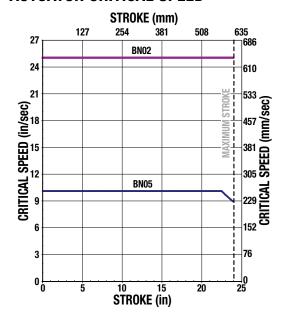
 $V_{RMS} = RMS$ Velocity

 $\boldsymbol{T}_i = \text{Thrust during interval i}$

V_i = Velocity during interval i

 $\mathbf{t}_{i} = \text{Time interval i}$

BRAKE CONSIDERATIONS

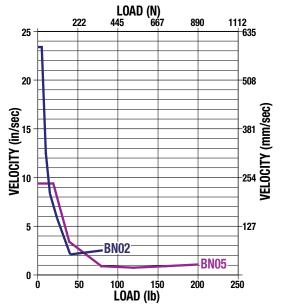

An unpowered ICR will require a brake to maintain its position if the force on the actuator exceeds:

BN02 screw - 7.5 lbf (33.4 N); BN05 screw - 12.5 lbf (55.6 N)

A brake can be used with the actuator to keep it from backdriving, typically in vertical applications. A brake may be used for safety reasons or for energy savings allowing the actuator to hold position when unpowered. Add SAB to the ordering code for the optional Spring-Applied/Electronically-Released Brake. (not available for service part ordering)

NOTE: The optional Spring-Applied/Electronically-Released Brake requires 24V power. It has a input current rating of 0.414 Amps.

ACTUATOR CRITICAL SPEED



SYSTEM POWER OVERLOADING CONSIDERATIONS

For applications with large load requirements, care should be taken to prevent the system from generating adverse amounts of power, resulting in overloading and possible failure of the actuator.

Speeds and loads that exceed the amounts indicated in the graph will require the use of a regeneration resistor or some other means to control excess regeneration energy.

Use the Tolomatic Shunt Regulator (part #2180-9811) for preventing over-voltage conditions. Screw terminals are marked with "+" and "-" which should be connected to the power bus.

POWER SUPPLY SIZING GUIDELINES

The ICR Basic and Plus actuators are intended to run off an isolated DC power source. The power supply that is required will depend on the application. A 48V supply will allow the actuator to operate at maximum speed. A 24V supply will result in approximately half the rated velocity. Input current will depend on the actuator power needed in the application. If operating more than one actuator on the same power supply add the required power supply rating for each actuator. Call Tolomatic for help in determining power supply requirements for your application.

BN05 - 1:1 RATIO (Required Power - Watts)

0.00				TUDIIC	T (lbf)				
SPEED (in/sec)				Innue	ועו) וי				
S (E)	50	100	150	200	250	300	350	400	
1	51	66	89	118	155	199	251	309	25
2	64	91	124	164	212	265	326	394	51
3	78	116	160	210	266	329	398	473	76
4	94	142	196	255	320	390	465	546	102
5	111	170	233	300	372	448	528	613	127
6	130	198	270	345	422	503	587		152
7	150	228	308	389	472	556			178
8	171	259	346	433	519				203
9	194	290	384	476					229
9.5	206	306	404						241
	222	445	667	890	1112	1334	1557	1779	SPEED (mm/sec)
				THRU	ST (N)				SPE (mm)

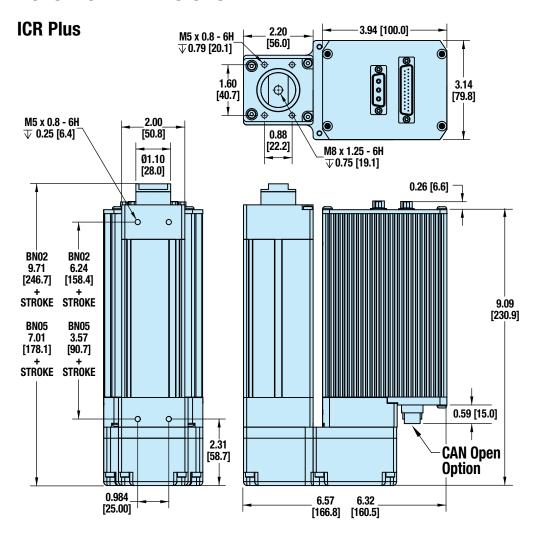
BN02 - 1:1 RATIO (Required Power - Watts)

					oquiroc	1 1 OVVO	******	10)	
SPEED (in/sec)				THRUS	T (lbf)				
S (E)	20	40	60	80	100	120	140	150	
2	26	47	70	95	123	154	186	204	51
4	36	66	98	132	169	208	249	271	102
6	48	86	127	170	216	263	313	339	152
8	61	109	158	210	264	319	377	406	203
10	77	133	191	251	313	376	441	475	254
12	94	159	226	294	363	434	506	543	305
14	113	187	262	338	415	493	572	612	356
16	134	217	300	383	468	552	638	681	406
18	157	248	339	430	522	613			457
20	182	281	380	479	577				508
22	209	316	423	528					<i>559</i>
24	237	353	467						610
	89	178	267	<i>356</i>	445	<i>534</i>	<i>623</i>	667	SPEED (mm/sec)
				THRU	ST (N)				SPEED (mm/sec

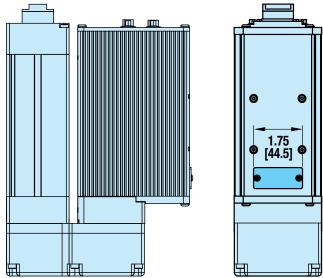
BN05 - 2:1 RATIO (Required Power - Watts)


SPEED (in/sec)	THRUST (lbf)										
S (ii)	100	200	300	400	500	600	700	800			
0.5	53	70	93	124	163	209	263	324	13		
1.0	67	95	130	173	222	279	343	413	25		
1.5	82	122	168	220	280	345	418	496	38		
2.0	99	150	206	268	336	409	488	573	51		
2.5	117	178	244	315	390	470	555	644	64		
3.0	137	208	283	362	443	528	616	708	76		
3.5	158	239	323	408	495	584			89		
4.0	180	271	363	454					102		
4.5	204	305	403	500					114		
4.75	216	322	424						121		
	445 890 1334 1779 2224 2669 3114 3559							(Sec)			
				THRU	ST (N)				SPEED (mm/sec)		

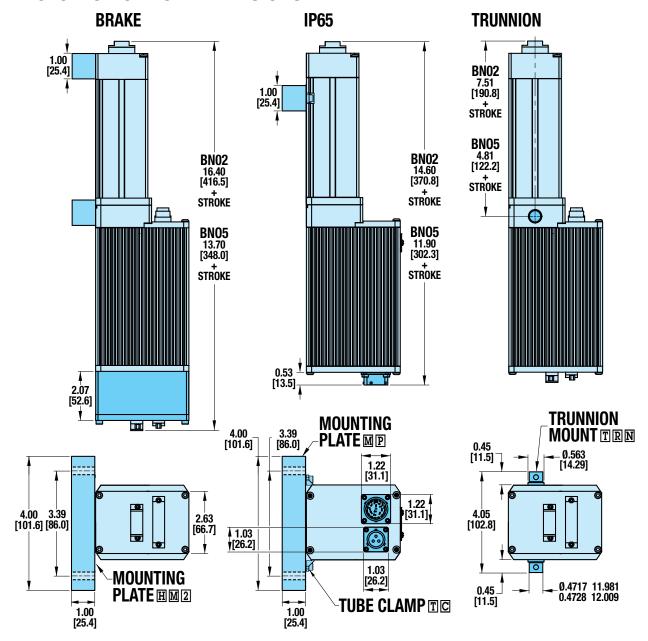
BN02 - 2:1 RATIO (Required Power - Watts)


				- (- 1				
SPEED (in/sec)				THRUS	T (lbf))			
S (E)	40	80	120	160	200	240	280	300	
1	28	49	73	100	129	161	196	214	25
2	38	69	103	139	177	218	262	285	51
3	50	91	134	179	226	276	329	356	<i>76</i>
4	64	114	166	221	277	335	396	427	102
5	81	140	201	264	329	395	464	498	127
6	99	167	237	309	381	456	532	570	152
7	119	196	275	355	436	517	600	642	178
8	141	228	315	403	491	580	670		203
9	165	261	356	452	548				229
10	191	295	399						254
11	219	332	444						279
12	249								305
	178	356	<i>534</i>	712	<i>890</i>	1068	1246	1334	SPEED (mm/sec)
				THRU	ST (N)				SPE (mm)

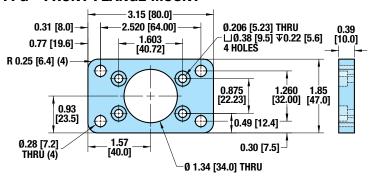
Use these tables to help determine the proper power source rating for an application. NOTE: green numbers indicate power supply required in Watts for the given speed and thrust indicated at outside margins.


ACTUATOR DIMENSIONS - LMI

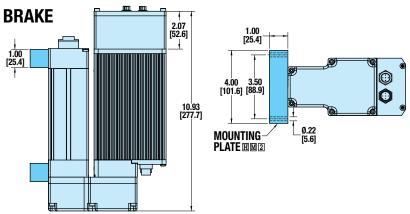
ACTUATOR DIMENSIONS -RP

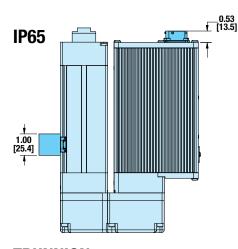


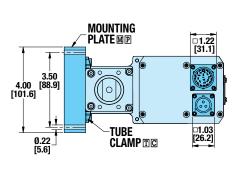
ICR Basic

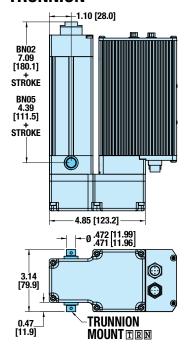


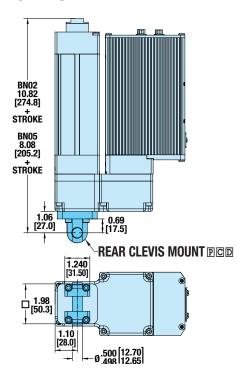
ACTUATOR OPTION DIMENSIONS - LMI



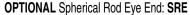

FFG - FRONT FLANGE MOUNT

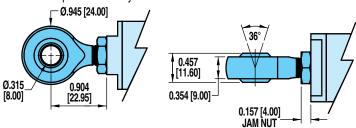


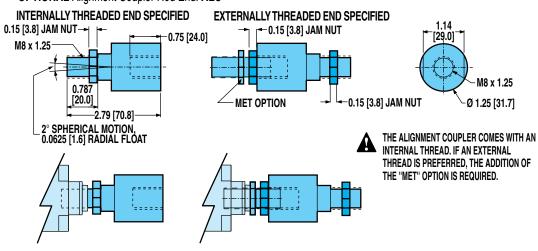

ACTUATOR OPTION DIMENSIONS - RP



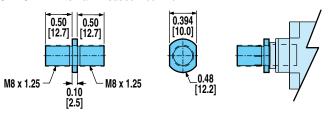
TRUNNION

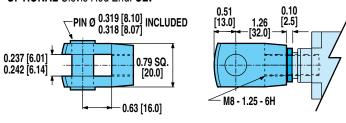



CLEVIS



ACTUATOR ROD END OPTION DIMENSIONS




OPTIONAL Alignment Coupler Rod End: **ALC**

OPTIONAL External Threaded Rod End: MET

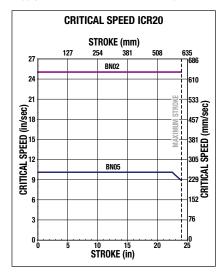
OPTIONAL Clevis Rod End: CLV

APPLICATION DATA WORKSHEET Fill in known data. Not all information is required for all applications ORIENTATION ☐ Vertical ☐ ☐ Horizontal ☐ Incline °

☐ Load supported by actuator	OR	I oad supported by other mechanism	

MOVE PROFILE EXTEND Move Distance	STROKE LENGTH inch (SK) (U.S. Standard) (Me	millimeters (SM)	POWER SUPPLY Amp ☐ 24 Vdc ☐ 48 Vdc
☐ inch ☐ millimeters Move Timesec	NOTE: If load or force changes the highest numbers for calculations.		PRECISION Repeatability □ inch □ millimeters
Max. Speed mm/sec	EXTEND	RETRACT	
Dwell Time After Movesec	LOAD kg.	LOAD kg.	OPERATING ENVIRONMENT Temperature, Contamination, etc.
RETRACT Move Distance ☐ inch ☐ millimeters Move Timesec	(U.S. Standard) (Metric) FORCE □ Ib. □ kg. (U.S. Standard) (Metric)	(U.S. Standard) (Metric) FORCE Ib.	
Max. Speed ☐ in/sec ☐ mm/sec	MOTION PROFILE		
Dwell Time After Movesec	+ -Speed ()		Graph your most demanding cycle,
NO. OF CYCLES per minute ☐ per hour			including accel/decel, velocity and dwell times. You may also want to indicate load variations and I/O changes during
HOLD POSITION? ☐ Required ☐ Not Required			the cycle, Label axes with proper scale and units.
☐ After Move ☐ During Power Loss			
POSITION CONTROL ☐ Manual Jog ☐ External Control Signal ☐ via Position Sensors ☐ Programmable ☐ PLC via I/O			—Time or Distance ()
CONTACT INFORMATION Name, Phone, Email Co. Name, Etc.			

Selection Guidelines


■ ESTABLISH MOTION PROFILE

Using the application stroke length and maximum velocity (or time to complete the linear motion), establish the motion profile. For a ICR Basic the factory set acceleration and deceleration is BN05: 22.2 in/sec² (564 mm/ sec²), BN02: 55.6 in/ sec² (1411 mm/ sec²). Determine if this acceleration and deceleration allows for desired cycle time. Contact the factory if the acceleration or deceleration needs to be adjusted for an ICR Basic or select the ICR Plus in step 8 for adjustable acceleration and deceleration.

2 COMPARE PEAK THRUST AND SPEED TO PEAK CAPACITIES

Calculate the application required peak thrust and speed and compare to graphs on page ICR_14.

Select the screw choice that achieves the necessary thrust and speed. Note the difference between a 24 or 48 Volt power supply. The 48 Volt will double the speed of 24 Volt.

2 COMPARE CONTINUOUS THRUST AND SPEED TO CONTINUOUS CAPACITIES

Calculate the Continuous or RMS thrust and speed required and compare to graphs on page ICR_14.

Select the screw choice that achieves the necessary thrust and speed for continuous operation. See complete instructions on page ICR_15 to help calculate continuous force.

$$\boldsymbol{T}_{\text{RMS}} = \sqrt{\frac{\text{sum } (\boldsymbol{T}_{i}^{2} \times \boldsymbol{t}_{i})}{\text{sum } (\boldsymbol{t}_{i})}} \quad \boldsymbol{V}_{\text{RMS}} = \sqrt{\frac{\text{sum } (\boldsymbol{V}_{i}^{2} \times \boldsymbol{t}_{i})}{\text{sum } (\boldsymbol{t}_{i})}}$$

BRAKE CONSIDERATIONS

In vertical applications an unpowered ICR will require a spring applied-electronically released brake to maintain position if the load on the actuator exceeds: **BN02:** 7.5 lbf (33.4 N) **BN05:** 12.5 lbf (55.6 N) Refer to page ICR_15 for more details.

POWER LOADING CONSIDERATIONS

Speed and load requirements will determine the power demands of the actuator. To ensure that power overloading does not occur, refer to the graph on page ICR_15 to determine if a regeneration resistor or similar device is required.

POWER SUPPLY SIZING

Size the appropriate power supply using the tables on page ICR_16. Numbers inside of bold box indicate power supply required in Watts. If operating more then one actuator on the same power supply, add the required power supply rating of each actuator.

TEMPERATURE

The ICR is intended to operate in an environment with a temperature between 50-122° F, (10-50° C). Performance is de-rated if the temperature is above 77° F (25° C). Contact the factory if the ambient temperature does not fit within this range.

SELECT MOUNTING OPTIONS

Examine mounting options dimensional drawings beginning on page ICR_19. Choose either inline or reverse parallel motor mounting. Choose to rigidly mount with tapped holes, tube clamps, mounting plates, front flange and alignment coupler. Choose a pivoting mount with trunnion, clevis or eye mount.

NOTE: Temperature at the base of the motor can approach 140°F (60°C)

SELECT BASIC OR PLUS MODEL

Determine which model is required for application. An ICR Basic for extend/retract commands with the ability to stop via external I/O. Or the ICR Plus for a fully programmable controller.

Select options of IP65, cables, and switches.

Call Tolomatic at for help in determining the best actuator for your application.

ICR Basic & ICR Plus

SWITCHES

SPECIFICATIONS

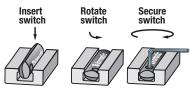
ICR products offer a wide range of sensing choices. There are 12 switch choices: reed, solid state PNP (sourcing) or solid state NPN (sinking); in normally open or normally closed; with flying leads or quick-disconnect.

Commonly used for end-of-stroke positioning, these switches allow drop-in installation anywhere along the entire actuator length. The one-piece design includes the retained fastening hardware and is designed for the slot on either the left or right side of the actuator. The magnet is a standard feature and is internally located in the anti-rotate bearing. See the dimensional drawings on page ICR_25 for details of switch locations. Switches can be installed in the field at any time.

Switches are used to send digital signals to PLC (programmable logic controller), TTL, CMOS circuit or other controller device. Switches contain reverse polarity protection. Solid state QD cables are shielded; shield should be terminated at flying lead end.

All switches are CE rated and are RoHS compliant. Switches feature bright red or yellow LED signal indicators; solid state switches also have green LED power indicators.

	Order Code	Part Number	Lead	Switching Logic	Power LED	Signal LED	Operating Voltage	**Power Rating (Watts)	Switching Current (mA max.)	Current Consumption	Voltage Drop	Leakage Current	Temp. Range	Shock / Vibration
	RY	8100-9082	5m	SPST Normally	_	Red	5 - 240							
REED	RK	8100-9083	QD*		Tolomatic	81009082	AC/DC	.C/DC **10.0	100mA	_	3.0 V max.			
IILLD	NY	8100-9084	5m	SPST Normally	_	Yellow	5 - 110	10.0					14 to 158°F [-10 to	
	NK	8100-9085	QD*		Tolomatic	81009084	AC/DC							
	TY	8100-9088	5m	PNP (Sourcing)	Green	Yellow				20 mA 100mA @ 24V				
	TK	8100-9089	QD*	Normally Open	Tolomatio	\$ 81009088								50 G / 9 G
	KY	8100-9090	5m	NPN (Sinking)	Green	Red								
SOLID	KK	8100-9091	QD*	Normally Open	Tolomatic	81009090	10 - 30	**3.0	100mΔ		2.0 V	0.05 mA	70°C]	
STATE	PY	8100-9092	5m	PNP (Sourcing)	Green	Yellow	VDC	OC 3.0	TOOMA		max.	max.		
	PK	8100-9093	QD*	Normally Closed	Tolomatic	÷ 81009092	ı							
	HY	8100-9094	5m	NPN (Sinking)	Green	Red								
	HK	8100-9095	QD*	Normally Closed	Tolomatic	81009094								

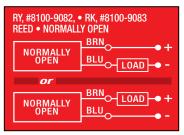

*QD = Quick-disconnect

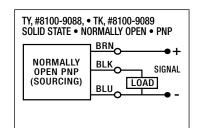
Enclosure classification IEC 529 IP67 (NEMA 6)

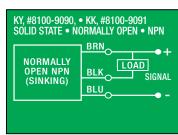
CABLES: Robotic grade, oil resistant polyurethane jacket, PVC insulation

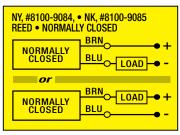
**WARNING: Do not exceed power rating (Watt = Voltage x Amperage). Permanent damage to sensor will occur.

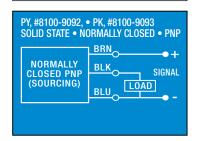
SWITCH INSTALLATION AND REPLACEMENT

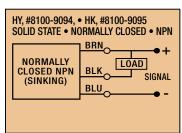


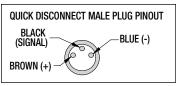

Place switch in side groove on tube at desired location with "Tolomatic" facing outward. While applying light pressure to the switch, rotate the switch halfway into the groove. Maintaining light pressure, rotate the switch in the opposite direction until it is fully inside the groove with "Tolomatic" visible. Re-position the switch to the exact location and lock the switch securely into place by tightening the screw on the switch.

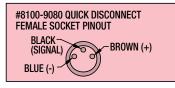


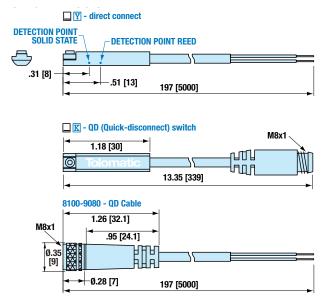

SWITCHES

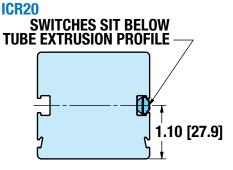

WIRING DIAGRAMS











SWITCH DIMENSIONS

MOUNTING DIMENSIONS

Dimensions in inches [brackets indicate dimensions in millimeters]

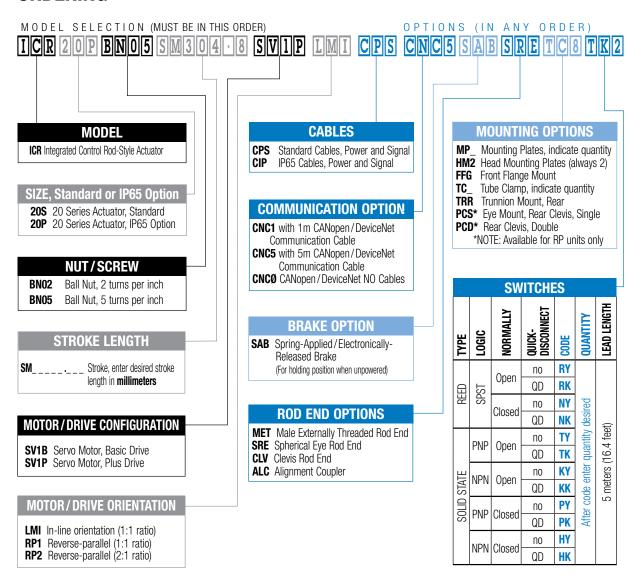
SERVICE PARTS ORDERING

SWITCHES

Switches for ICR actuators include retained mounting hardware and are the same for all actuator sizes and bearing styles

Code		Part Number	Lead	Normally	Sensor Type	
RY		8100-9082	5m (197 in)	Opon	Reed	
RK		8100-9083*	Quick-disconnect	Open	neeu	
NY		8100-9084	5m (197 in)	01	Deed	
NK		8100-9085*	Quick-disconnect	Closed	Reed	
TY		8100-9088	5m (197 in)	Onon	Solid State PNP	
TK		8100-9089*	Quick-disconnect	Open		
KY		8100-9090	5m (197 in)	Open	Calid Ctata NDN	
KK		8100-9091*	Quick-disconnect	Ореп	Solid State NPN	
PY		8100-9092	5m (197 in)	Closed	Colid Ctoto DND	
PK		8100-9093*	Quick-disconnect	Ciosea	Solid State PNP	
HY		8100-9094	5m (197 in)	Closed	Colid Ctoto NIDN	
HK		8100-9095*	Quick-disconnect	Closed	Solid State NPN	

*Also order mating QD cable #8100-9080


8100-9080 Mating QD (Quick-disconnect) cable 197 in. (5m)

OPTIONS

Description	Part Number	Cable Length						
CABLES: ICR Basic or ICR Plus								
Signal Cable: IP40	3604-1640	5m						
Signal Cable: IP65	3604-1648	5m						
Power Cable: IP40	3604-1641	5m						
Power Cable: IP65	3604-1649	5m						
CABLES: ICR Plus								
1M DeviceNet / CANopen cable	3604-1659	1m						
3M DeviceNet / CANopen cable	3604-1660	5m						
Adapter cable for USB to CANopen converter	3604-1626	5m						

Description	Part Number
MISCELLANEOUS: ICR Basic or ICR Plus	
Shunt Regulator	2180-9811
MISCELLANEOUS: ICR Plus	
Starter Kit (for use with CANopen, USB computer connections and multi-actuator applications) Includes: USB to CAN converter Adapter cable for USB to CAN converter 3604-1626 Male terminator resistor 3604-1653	2180-9100
Male terminator resistor	3604-1653
Female terminator resistor	3604-1654
USB to CANopen converter	3604-1627
ROD END KITS: ICR Basic or ICR Plus	
Alignment Coupler Kit	2180-9024
Eye Rod End Kit	2180-9058
Clevis Rod End Kit	2112-9020
Threaded Rod End Kit	2112-1058
MOUNTING KITS: ICR Basic or ICR Plus	
Front Flange Mount Kit	2124-9032
Mounting Plate Kit	2180-9002
Tube Clamp Mount Kit (includes 2 Tube Clamps)	8125-9018
Head Mounting Plate Kit (includes 2 mounts)	2108-9026

ORDERING

See the ICM Plus brochure #2100-4008 for information about capabilities, features and ordering